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Abstract

A method is presented for solving the Boltzmann equation in layered systems

without the relaxation-time approximation. The solution is compared with

that obtained using the relaxation-time approximation for free-electron solids

in the presence of boundaries. For the cases studied, most of the differences

can be minimized by using the transport relaxation time. For non-free electron

materials it is expected that the differences will be more complex.

I. INTRODUCTION

The relaxation-time approximation is almost universally used to simplify calculations of

the conductivity. In multilayer systems, it has recently been used extensively to calculate

(see Ref. 1 for reviews) the giant magnetoresistance,2 which is the change in the electrical

resistance that occurs in systems containing magnetic layers when the direction of magneti-

zation is changed in some of the layers. For free-electron models, the resulting simplification

allows analytic solutions when current flow is parallel to the interfaces.

A common approach for calculating the conductivity is to solve the semiclassical Boltz-

mann equation. A detailed discussion of the use of the Boltzmann equation in bulk systems

is given by Allen.3 This approach has been applied to multilayer systems, using both free-

electron4 and ab initio band structures.5 In most situations, solving the Boltzmann equation
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gives similar, if not identical, results to the other common approach, evaluating the Kubo

formula (see Ref. 6 for a discussion of this issue for free-electrons).

If the current is perpendicular to the interface, there is no analytic solution, even with

the relaxation-time approximation. Recently, Zhang and Levy7 have examined the role of

diffuse and specular interface scattering in this geometry, using the relaxation-time approxi-

mation. Valet and Fert8 used it to study the validity of a previously introduced macroscopic

model. For this geometry a number of workers9 have studied the resistance due to a sin-

gle barrier. The most detailed results were obtained by Kunze10 who obtained numerical

results for the current and the particle density as well as for the barrier resistivity, again

in the relaxation-time approximation. Schep et al.11 have used a simplified model of bulk

transport in conjunction with ab initio calculations of the transmission and reflection from

ideal interfaces to compute the resistances of those interfaces.

There are two situations in which the relaxation-time approximation is exact. The first

case is for isotropic scattering, which for free-electrons holds when the elastic impurity

scattering is described by a delta function. In this case, the relaxation-time approximation

remains exact in the presence of spatial variations. The second, more restrictive case occurs

when the elastic impurity scattering depends only on the scattering angle, there is no spatial

variation, and the transport relaxation-time (see Sec. II) is used for the relaxation time.

In this paper we develop a method to solve the Boltzmann equation in layered systems

without invoking the relaxation-time approximation. We then calculate the conductivity

for several situations that involve free-electron metals with boundaries so that the systems

are not homogeneous and the relaxation-time approximation is not strictly valid. The cal-

culations are compared to those done using the relaxation-time approximation. The cases

studied are (1) a single slab of finite thickness, diffuse reflection at the surfaces and an

applied electric field parallel to the surface and (2) an infinite free-electron metal divided

by a partially reflecting interface with an applied field perpendicular to the interface. We

find that the relaxation-time approximation describes the conductivity well as long as the
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relaxation time is chosen to be the transport relaxation time. It should be emphasized that

in more anisotropic situations, such as d-band metals rather than free-electron metals, the

relaxation-time approximation may not be adequate.

In Sec. II, we discuss the Boltzmann equation and the relaxation-time approximation for

free-electron metals. In Sec. III, we examine the conductivity for the case of a thin slab,

assuming a free-electron metal and non-specular boundary scattering and in Sec. IV, the

resistance at a partially reflecting interface is calculated for applied fields perpendicular to

the interface. Sec. V is a summary of the paper. The formalism for solving the Boltzmann

equation in layered systems is given in the Appendix.

II. THEORY

In this section, we first discuss the Boltzmann equation and the relaxation-time ap-

proximation, then we discuss the specific case of free-electron materials and impurity scat-

tering that depends only on the scattering angle. The distribution function is given by

f(k) = f0(εk)+(∂f0/∂ε)g(k) in the presence of an external field, where f0 is the equilibrium

distribution function. For metals, the changes in the distribution function can be restricted

to energies close to the Fermi energy because the factor, ∂f0/∂ε, is sharply peaked around

the Fermi energy. For the linearized Boltzmann equation, the changes are approximated to

occur only on the Fermi surface. The linearized Boltzmann equation for g is

vz
∂g(k)

∂z
− (

∂g(k)

∂t
)
coll

= eEvx,z, (1)

where g(k) is the change in the electron distribution for wavevectors, k, restricted to the

Fermi surface. The change in the distribution arises from a field, E, assumed to be constant

throughout the layer. The distribution also depends on spatial position, i.e. g = g(k, z), but

this dependence of g on z will not be written explicitly. It is assumed that the geometry

is such that the spatial dependence is only in the z-direction; the system is uniform in the

x and y directions. In Eq. (1) E is the external electric field and vx,z either is vx or vz
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depending on whether E is in the x or z-direction respectively. The velocities, vx or vz are

the x and z components of velocity at the Fermi surface.

The term that describes collisions with impurities is

−(
∂g(k)

∂t
)
coll

=
g(k)

τ0(k)
−
∫

FS
dk′P (k,k′)g(k′), (2)

where the scattering relaxation time is

1

τ0(k)
=
∫

FS
dk′P (k,k′), (3)

and P (k,k′) is the probability of scattering from k to k′. The first term on the right-hand

side of Eq. (2), the scattering-out term, represents the rate that electrons are scattered out

of the state k. The second term, the scattering-in term, is the rate at which electrons are

scattered into k, P (k,k′)g(k′) being the rate at which electrons are scattered from k′ to k.

The isotropic part of g is not affected by collisions. For this part, the two terms on the right

hand side of Eq. (2) cancel each other. Only the anisotropic part of g relaxes.

The relaxation-time approximation replaces Eq. (2) with

−(
∂g(k)

∂t
)
coll

=
g(k)− g

τ(k)
, (4)

where g is the spatially dependent average of g over the Fermi surface.

g =
1

4π

∫
FS
dkg(k). (5)

If the scattering is isotropic, the scattering probability can be factored out of the integral in

the scattering-in term. Then, only the isotropic part of the distribution function remains.

In this case, the relaxation-time approximation, Eq. (4), is exact. For a more general

scattering function, the relaxation time in Eq. (4), τ , is allowed to be different from the

scattering relaxation time τ0. Later in this section, we show that for free electrons with

non-isotropic scattering, the transport relaxation time, defined below in Eq. (7), is a better

approximation.
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Up to this point the discussion has been general, (a) applicable to a non-free-electron

metal, and (b) no assumptions have been made about the dependence of P on k,k′. We

now discuss the case of a free-electron metal; the general case is treated in the Appendix.

For the case of free electrons scattering elastically from spherically symmetric impurities,

P (k,k′) is a function of the scattering angle θk,k′ where cos(θk,k′) = Ω̂ · Ω̂′ and Ω̂ = k/kF is

the direction of the momentum of an electron on the Fermi surface. In that case it can be

shown that the bulk solution (no spatial variation) of Eq. (1) for g(Ω̂) is given by12

g(Ω̂) = τtranseEvF cos(θ), (6)

for an electric field in the z-direction, with cos(θ) = Ω̂ · ẑ. The transport relaxation time is

given by

1

τtrans

=
∫
dΩ̂′P (Ω̂, Ω̂′)(1− Ω̂ · Ω̂′). (7)

It is determined by P (Ω̂, Ω̂′)(1 − Ω̂ · Ω̂′) rather than the differential scattering probability

alone, P (Ω̂, Ω̂′), due to the scattering-in term of Eq. (2). τtrans can be interpreted as the

relaxation time for the momentum. A small angle electron scattering will not serve to

randomize the electron momentum, thus the factor (1− Ω̂ · Ω̂′) in Eq. (7) is small for small

angle scattering. For isotropic scattering, these two times, τ0 and τtrans, are equal.

The Boltzmann equation in the relaxation-time approximation is

vz
∂g(Ω̂)

∂z
+
g(Ω̂)− g

τ(Ω̂)
= eEvx,z, (8)

while the Boltzmann equation without the relaxation-time approximation is

vz
∂g(Ω̂)

∂z
+
g(Ω̂)

τ0(Ω̂)
−
∫
dΩ̂′P (Ω̂, Ω̂′)g(Ω̂′) = eEvx,z, (9)

where τ0(Ω̂) is given by Eq. (3). In the case of a delta function scattering potential, i.e.

isotropic scattering, Eq. (9) reduces to Eq. (8), the Boltzmann equation in the relaxation-

time approximation, with τ given by the scattering time τ0 in Eq. (3).
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III. THIN SLAB

We now calculate the conductivity of a slab in a free-electron model. The slab is confined

to −d
2
< z < d

2
and is infinite in the x and y-directions. The external field is taken to be in

the x-direction. The slab is shown in Fig. 2(a).

The Boltzmann equation is given by Eq. (9) with vx,z = vx. The change in the distribu-

tion function, g(Ω̂), is labeled g+ or g− depending on whether the component of velocity in

the z-direction, vF cos(θ), is in the positive or negative z-direction. The boundary conditions

are

g+(Ω̂spec) = plg
−(Ω̂) z = −

d

2

g−(Ω̂spec) = prg
+(Ω̂) z =

d

2
, (10)

where Ω̂spec denotes the direction of an electron that was traveling in a direction Ω̂ and is

specularly reflected. The specularity coefficients, pl, pr, satisfy

0 ≤ pl,r ≤ 1, (11)

where p = 0 denotes completely diffuse scattering and p = 1 is the condition for completely

specular scattering. It is easily verified by substitution that the solution of Eq. (8), the

Boltzmann equation in the relaxation-time approximation, in this geometry is

g+(Ω̂) = (1 + F+e
−(d+2z)
2τ |vz | )eEvxτ

g−(Ω̂) = (1 + F−e
(d+2z)
2τ |vz | )eEvxτ, (12)

where vz = vF cos(θ) and vx = vF sin(θ) cos(φ). eEvxτ is the bulk solution, Eq. (A11), i.e.

the solution of the particular Eq. (A8), and the second term on the right-hand side of Eq.

(12) is the solution of the homogeneous equation, Eq. (A6). The quantities F+ and F−

are determined by substitution of Eq. (12) into Eq. (10). The conductivity per spin is then

obtained from
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σrta = −
e

E

1

(2π)3

1

d

∫ d
2

− d
2

dz
∫
d3k vxg(Ω̂)

∂f0

∂ε

= −
e

E

1

(2π)3

mkF

h̄2

1

d

∫ d
2

− d
2

dz
∫

FS
dΩ̂ vxg(Ω̂) (13)

where v = h̄
m

k.

In the limit of specular reflection, pl = pr = 1, the slab mimics a bulk metal and the

conductivity is given by the bulk value,

σ0 =
ne2τ

m
, (14)

where n is the number of electrons (per spin) per unit volume, e is the electron charge,

and m is the electron mass. Because we are interested in deviations from bulk behavior,

we focus on the diffuse limit. For the case of purely diffuse scattering, pl, pr = 0, and

F+ = −1, F− = −e
−d
τ |vz| . The conductivity for this case was first given by Sondheimer13 as

σrelax

σ0
= 1−

3

8s
+

3

2s

∫ ∞
1

dt(
1

t3
−

1

t5
)e−st, (15)

where one has

s =
d

τvF
. (16)

The limiting forms of Eq. (15) are

σrelax

σ0
= 1−

3

8s
s� 1, (17)

and

σrelax

σ0

=
3s

4
ln(

1

s
) s� 1. (18)

We choose a model for impurity scattering of the form

V (r) = Ae−r
2/2`2 , (19)

where ` is a parameter that measures the effective range of the potential and A is the

strength. This model is chosen because it is simple and provides a length scale, `, for
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the scattering potential. In general, the defects that cause scattering are unknown, but

should have a finite extent on the order of atomic dimensions. Below, we obtain numerical

results for kF` = 0, 1, 2, 3. In the limit that ` → 0, V (r) is effectively a delta function so

that P (Ω̂, Ω̂′) becomes constant and the relaxation-time approximation becomes valid. The

scattering probability is given by

P (Ω̂, Ω̂′) =
∫
d3rei(k−k′)·rV (r), (20)

in the Born approximation. Both k and k′ lie on the Fermi surface. The model scattering

potential is spherically symmetric so that P depends only on the angle between k and k′,

the scattering angle θk,k′ . Use of Eq. (19) in equation (20 ) gives

P (Ω̂, Ω̂′) = P (θk,k′) = Be−(kFl)
2(1−cos θk,k′ ), (21)

where kF is the Fermi momentum. For a given kF`, B determines the relaxation time.

Fig. 1(a) shows the anisotropy of the scattering probability, P , as the parameter kF` takes

the values 0, 1, 2, 3.

Use of Eq. (21) in Eqs. (3) and (7) gives the ratio of the scattering time to the transport

relaxation time, which is equal to the ratio of the scattering mean free path, λ0, to the

transport mean free path

τ0

τtrans

=
λ0

λtrans

=
(e2a − 2a− 1)

(ae2a − a)
, (22)

where a = (kF`)
2, (see Fig. 1). The transport mean free path is given by

λtrans = vFτtrans, (23)

and we will take λtrans to be the mean free path when the relaxation-time approximation is

used; τ → τtrans and vFτ → λtrans.

The solution of the Boltzmann equation without the relaxation-time approximation is

given in the Appendix. There, the distribution function is discretized onto a mesh of points

k on the Fermi surface, and the Boltzmann equation is solved on that mesh. For the thin

film considered here, the solution on that mesh can be written
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g+
k = τtranseEvkx +

∑
λi>0

ξie
−λizxi,k

g−k = τtranseEvkx +
∑
λi<0

ξie
−λizxi,k, (24)

where gk is the value of g at a point k on the Fermi surface. For a free electron model, k

denotes a particular value of Ω̂. The superscript + or− refers to states moving in the positive

or negative z-direction respectively. The first term is the driving term for the Boltzmann

equation, the right hand term in Eq. (1). The quantities xi and λi are the eigenvectors

and eigenvalues respectively of the operator for a form of the scattering matrix (see Eqs.

(A7), (A10), and (A14)). The ξi are determined from the boundary conditions, Eq. (10).

Electrons moving to the right must relax towards the bulk value of g as they move away

from the left interface, hence the restriction λi > 0 in the first line of Eq. (24). The current

density as a function of position is given by

j(z) = −e
1

(2π)3

mkF

h̄2

∫
FS
dΩ̂ vxg(Ω̂). (25)

In practice, this is evaluated by a sum over the discrete mesh.

We now assume purely diffuse scattering at the boundaries and we compare the current

density calculated without the relaxation-time approximation to that calculated with the

relaxation time approximation (using the transport scattering time and mean free path).

The resulting current densities are shown in Fig. 2 for three different values of the film

thickness; d = λtrans/8, λtrans/2, and 2λtrans. The results can be understood as follows. For

the case shown in Fig. 2(b), d = λtrans/8, the “exact” current is less than the relaxation-

time approximation current for all values of z. Because of the diffuse scattering at the walls

there are fewer electrons available there to scatter into a state Ω̂ from some other state Ω̂′

as can be seen from the second term on the right-hand side of Eq. (2). This means that

the scattering time near the walls will be shorter than in the bulk and consequently the

current will be smaller. The relaxation-time approximation is correct only for the uniform

bulk situation and doesn’t take proper account of the effects of the boundary conditions,

e.g. g+ = 0 at z = −d
2

(Eq. (10)), thus it over estimates the amount of scattering “in” from
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the second term on the right-and side of Eq. (2). As the electrons move away from the wall

they lose their memory of it on a length scale of the mean free path. The exact solution

has a shorter mean free path near the walls and so it approaches the bulk current density

at a faster rate than the relaxation-time approximation current, hence the crossing of the

currents in Fig. 2(c). Fig. 2(d) is for a larger value of the slab width and shows the approach

of the currents to the bulk value.

Figure 3 shows the ratio of the “exact” conductivity, σ, to that of the conductivity calcu-

lated in the relaxation-time approximation, σrta, again using the transport mean free path,

λtrans. This ratio is plotted versus d/λtrans for various values of the parameter kF` in Eq.

(21). For kF` = 0, the scattering is isotropic, corresponding to a delta function scattering

potential. As discussed earlier in the paper, the relaxation-time approximation is exact in

this limit and the ratio of conductivities is unity. In the limit of large d/λtrans, the electrons

don’t see the boundaries. In this isotopic situation the relaxation-time approximation is

exact and the ratio of conductivities approaches one. For very small d/λtrans, the ratio of

conductivities behaves as shown in the insert of Fig. 3 and can be understood as follows.

Equation (18) gives σrelax ∼ d ln(λtrans/d). As described above, the relaxation-time approxi-

mation overestimates the mean free path for electrons near a diffusely scattering boundary.

If we assume the exact conductivity takes the form d ln(λeff/d) where λeff < λtrans then

σ/σrta → 1 as d/λtrans → 0 and σ/σrta decreases as d/λtrans increases from zero in agreement

with the behavior shown in the insert of Fig. 3. However, there will be quantum effects in

the region d/λtrans � 1 that are not treated by the Boltzmann equation.

It is clear from the strong dependence of λtrans/λ0 on kFl shown in Fig. 1 that the good

agreement between the “exact” conductivity and that calculated using the relaxation-time

approximation depends on the use of the transport relaxation time.
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IV. AN INFINITE METAL DIVIDED BY AN INTERFACE

We now consider the case of a infinite, free-electron metal divided by an interface at

z = 0. Electrons incident on the interface are reflected or transmitted with a probability that

depends on their angle of incidence. For current perpendicular to the interface, the current

density must be conserved and is thus constant, independent of z. Besides the resistivity

due to impurity scattering there is an additional resistivity due to the fact that there will be

only partial transmission across the interface. To force a finite current through the partially

reflecting interface, it is necessary to build up a finite chemical potential difference across the

interface. In general, the chemical potential will also have an exponential-like dependence

on z that decays away from the interface on both sides. Figure 4 shows the behavior of the

chemical potential near the interface. In Fig. 4(a) the variation due to the external field is

not included and in Fig. 4(b) it is. In both panels, the dashed lines show the extrapolation of

the chemical potential difference far from the interface back to the interface, this difference is

labeled∞ in the Figure. The chemical potential difference at the interface is labeled 0. The

interface resistivity is given by the ratio of the extrapolated chemical potential difference

divided by the current through the interface.

In this geometry, the relaxation-time approximation to the Boltzmann equation cannot

be solved analytically as can be done when the current is parallel to the barrier. The

Boltzmann equation is given by

vz
∂gi(Ω̂)

∂z
+
gi(Ω̂)

τ0(Ω̂)
−
∫
dΩ̂′P (Ω̂, Ω̂′)gi(Ω̂

′) = eEvz, (26)

where i = 1, 2 denotes the metal to the left or right of z = 0 respectively. The scattering

probability is given by Eq. (21). As previously, the change in the distribution function, gi(Ω̂),

will be labeled g+ or g− depending on whether the component of velocity in the z-direction,

vF cos(θ), is in the positive or negative z-direction. The boundary conditions at z = 0 are

g1
− = R11g1

+ + T12g2
−

g2
+ = R22g2

− + T21g1
+, (27)
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where Rii is the probability that an electron in region i, is reflected back into i and Tij is

the probability that the electron is transmitted from region j into region i. The reflection

and transmission coefficients are modeled as

Rii(θ) = 1− Tij(θ) =
α

α+ cosn(θ)
, (28)

where θ is the angle of incidence and α and n are parameters. This form is a generalization

of the result14 for a sheet delta function potential of strength h̄vF

√
α at z = 0, for which

n = 2. A sheet delta function with an appropriate amplitude is a good approximation for the

low energy reflection from planar defects, like stacking faults, where the electronic structure

is the same on both sides of the interface.15 For interfaces between dissimilar materials,

reflection is more complicated. To examine a range of behaviors while maintaining a simple

form for the reflection, we generalize the exponent n to other values.

The boundary conditions require gi to not diverge far from the interface, thus the solution

given by Eq. (A20) and Eq. (A11) takes the form

g1k = τtranseEvkz + ξ
(1)
0 zk + ξ

(1)
1 (zkz − zk

′) +
∑
λi<0

′
ξ

(1)
i e−λizxi,k

g2k = τtranseEvkz + ξ
(2)
0 zk + ξ

(2)
1 (zkz − zk

′) +
∑
λi>0

′
ξ

(2)
i e−λizxi,k, (29)

in regions 1 and 2. The first term on the right-hand side of Eq. (29) is the bulk solution in

layer i for field Ei. The second term represents a uniform shift in the Fermi energy because

zk = 1 and f = f0 + (∂f0/∂ε)g. The third term is given by Eq. (A16) and it is clear from

Eq. (A19) that unlike the second term, it carries current. If the correct value of Ei is used

in the first term, then ξ
(i)
1 = 0, otherwise this term essentially correct the field and the

associated current flow. The exponential terms do not carry current perpendicular to the

interface because current conservation is incompatible with an exponential variation.

The interface resistance, R, is given by the relation ∆V = IR where ∆V = (ξ
(1)
0 −ξ

(2)
0 )/e

is the potential drop across the interface and I = jA where j is the current density through

the interface and A is the cross sectional area of the interface. The interface resistance,

R, is the additional resistance of the sample due to the interface. It is useful to define
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an additional resistance, R0, to be the total potential drop at the interface divided by the

current. It is obtained by replacing ξ
(i)
0 above by ξ

(i)
0 + δµexp,i(z = 0). δµexp,i(z = 0) is the

change in the Fermi energy at the interface in region i = 1, 2 due to the exponential terms

in Eq. (29) and it is given by the Fermi surface average of those terms evaluated at z = 0.

The current density is

j(z) = −e
1

(2π)3

mkF

h̄2

∫
FS
dΩ̂ vzg(Ω̂), (30)

and is constant throughout the metal.

The discretization of Ω̂ is such that Ω̂k takes on N values in each region so the boundary

conditions, Eq. (27), constitute N equations. There are N/2− 1 values of ξ
(1)
i and N/2− 1

values of ξ
(2)
i in Eq. (29) as well as ξ

(1)
0 , ξ

(2)
0 , ξ

(1)
1 , and ξ

(2)
1 . We choose ξ

(1)
0 = −ξ(2)

0 = ξ0,

which corresponds to a relative shift in the Fermi energies in region 1 and 2 corresponding

to a potential difference between the two regions created by the applied field. As discussed

above, ξ
(2)
1 = ξ

(1)
1 = 0, because the current density is equal to its bulk value everywhere.

With these choices we can find g1k, g2k and calculate the interface resistance, R, as well as

the resistance at the interface, R0.

The term zz − z′, (see Eq. (A16)) can be understood as an electrochemical potential

(the gradient of which gives a field) and an associated current flow. In the general case of

perpendicular transport, the bulk conductivities will differ from layer to layer, so the internal

fields will be different from layer to layer. One way to solve for the overall conductivity is

to impose a bulk-current density at infinity, and then solve the boundary conditions from

layer to layer to determine the internal fields. In this approach, the solution zz − z′ plays

a crucial role in each layer. An alternate approach is to solve the particular equation in

each layer and find the field that is necessary to make the current the same in each layer.

In this approach, the solution zz − z′ plays no role, because it has already been accounted

for by the particular solution and the field. We have used this latter approach in the work

described here. The relationship between zz − z′, the field, E, and the particular solution

is given by Eq. (A19).
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The behavior of the interface resistance can be understood in greater detail by examining

the current density and “chemical potential” as a function of position on the Fermi surface.

It is useful to define

δµ = (g2
+ + g2

−)− (g1
+ + g1

−), (31)

where gi
+ refers to an electron moving to the right in the direction Ω̂ and gi

− refers to

an electron moving in a direction corresponding to specular scattering at the interface, i.e.

θ → (π − θ) and φ → φ. The quantities gi
± correspond to the same value of momentum

parallel to the interface. We also define

δj = (gi
+ − gi

−) cos(θ), (32)

where conservation of current requires δj to be independent of i for interfaces with no diffuse

scattering, as we consider here.

Combining Eqs. (27), (28), (31), and (32) gives

δµ = −2α δj/cosn+1 θ, (33)

which can be solved by δµ ∝ α and δj ∝ cosn+1 θ. We find that this solution holds in

the limit that α → ∞, where strong reflection for all angles gives a large δµ only weakly

dependent on angle. From Eq. (29), it is clear that δj depends on the ξi terms, the coefficients

of the exponentially varying terms, and not on ξ0, while δµ depends on both the ξi and ξ0.

We conclude that for large α, ξ0 ∝ α while the ξi are roughly independent of α. Since the

exponential terms depend strongly on θ, δj has a strong angular variation in this limit. This

behavior for large α is illustrated in Fig. 5 for values of α corresponding to strong reflection.

For small α, on the other hand, the reflection is weak near the zone center, cos(θ) ∼ 1, and

the current distribution is very close to the bulk distribution, cos2(θ). This, in turn leads to

a strong dependence of δµ on θ. The consequences of the limiting behaviors of α behavior

are shown in Figs. 6 and 7.

As a function of α, Figs. 6(a) and 7(a) show the interface resistance Rrta, the resistance

calculated using the relaxation-time approximation to the Boltzmann equation, Eq. (8), and
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the transport lifetime. The linear dependence of Rrta on α is a direct result of the fact that

the interface resistance, R, is given by the relation ∆V = IR where ∆V = (ξ
(1)
0 − ξ

(2)
0 )/e

and ξ0 ∼ α.

Figures 6(b) and 7(b) are plots of the ratio R/Rrta. The curves are for the values

kF` = 0, 1, 2, 3. The relaxation-time approximation to the Boltzmann equation using the

transport lifetime corresponds to kFl = 0. The independence of R/Rrta on α also follows

from the linear dependence of ξ0 on α. The fact thatR/Rrta → 1 implies that the exponential

terms become constant, independent of α, for large α.

Figures 6(c) and 7(c) show the interface resistance difference, R − R0, versus α for

kFl = 0, 1, 2, 3. The difference, R−R0, depends only on the exponential terms which do not

depend on α for large α, hence the saturation of the curves.

The case n = 1 is a special case where there is no exponential contribution to the charge

density, the terms on the right-hand side of Eq. (29) vanish. In that case the interface

resistance is given by

R = 2α
6π2m

Ae2k3
F

= 2αRA. (34)

This quantity is identical to the resistance that describes the total potential drop across the

interface, and there are no corrections to the relaxation-time approximation.

V. SUMMARY

A method is presented for solving the spatially varying Boltzmann equation without

the making the relaxation-time approximation. This method is presented in the Appendix

and involves a discretization of points on the Fermi surface. The scattering terms can then

be inverted by matrix methods and the spatial part of the equation can be dealt with

analytically.

The solution is compared with that obtained using the relaxation-time approximation

for free-electron solids in the presence of boundaries. The cases studied are (a) a single
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slab of finite thickness with non-specular reflection at the surfaces and an applied electric

field parallel to the surface and (b) the case of an infinite free-electron metal divided by

a partially reflecting interface with an applied field. For the cases studied, most of the

differences can be minimized by using the transport relaxation time. For reasonable values

of the parameters maximum differences in conductivities or resistances are of order 10 %

and typically the differences are considerably smaller. For non-free-electron materials it is

expected that the differences will be more complex because the transport relaxation time is

exact only for an isotropic bulk material.
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APPENDIX

In a homogeneous layer, the linearized Boltzmann equation to be solved is, from Eqs.

(1) and (2),

vz
∂g(k)

∂z
+
g(k)

τ0(k)
−
∫

FS
dk′P (k,k′)g(k′) = A(k), (A1)

where A(k) is the term due to the external electric field. The solutions from several layers

can be joined together using the boundary conditions between the layers to give the result

for a composite structure. In order to solve Eq. (A1) we discretize it;

vzk
∂gk

∂z
+
gk

τk
−
∑
k′

∆k′Pk,k′gk′ = Ak, (A2)

where gk is the value of g at a point k on the Fermi surface and ∆k is a weighting factor

such that

∑
k

∆k =
∫
dΩ̂, (A3)
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and

1

τk
=
∑
k′

∆k′Pk,k′, (A4)

where Pk,k′ is symmetric.

The spatial dependence of Eq. (A2) can be solved by finding the solutions to the partic-

ular and to the homogeneous equations. The particular equation is

gk

τk
−
∑
k′

∆k′Pk,k′gk′ = Ak, (A5)

while the homogeneous equation is

vzk
∂gk

∂z
+
gk

τk
−
∑
k′

∆k′Pk,k′gk′ = 0. (A6)

It is useful to define

Bk,k′ =
δk,k′

τk
−∆k′Pk,k′, (A7)

so that the particular equation, Eq. (A5), becomes

∑
k′
Bk,k′gk′ = Ak, (A8)

and the homogeneous equation, Eq. (A6), is written as

∑
k′

(δk,k′
∂

∂z
+ [V −1B]k,k′)gk′ = 0, (A9)

where one has

Vk,k′ = vzkδk,k′. (A10)

The matrices B and V −1B are both asymmetric and singular, since
∑

k′ Bk,k′ = 0.

For the free-electron case when P depends only on scattering angle, the solution of Eq.

(A8) is given by Eq. (6), which in the notation of this appendix is

gk = τtransAk, (A11)

where τtrans is given by Eq. (7).
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In general, Eq. (A5) has the formal solution

gk =
∑
k′
B−1

k,k′Ak′ , (A12)

but the matrix Bk,k′ is singular. The eigenvector z, corresponding to the zero eigenvalue of

B has constant components, zk = 1, because

(Bz)k =
∑
k′
Bk,k′zk′ =

∑
k′
Bk,k′ = 0. (A13)

If Eq. (A6) is satisfied by a g then g+constant×z is also a solution. The solutions of Eq.

(A12) for gk that are of physical interest can be obtained numerically from the singular value

decomposition of B. The numerical solution we use gives a result that is orthogonal to zT.

For the free-electron case, when P depends only on scattering angle, the first term on the

right-hand side of Eq. (A20) is given by τtransAk.

The homogeneous equation, Eq. (A9), can be solved as follows. Denote the right eigen-

vectors of V −1B by xi and the corresponding eigenvalues by λi where

V −1Bxi = λixi. (A14)

Then the expression

g =
∑
i

ξie
−λizxi, (A15)

is seen to be a solution of Eq. (A9) by substitution. The ξi are constants to be determined

by the boundary conditions.

A complication is that, for V −1B, the zero eigenvalue is doubly degenerate with the same

eigenvector z, as discussed above. The matrix is referred to as defective and is said to have a

non-trivial Jordan block. Consequently, the two terms that correspond to zero eigenvalues,

λi = 0, are not included in Eq. (A15) because they have a different form. The constant

term, ξ0z, is one additional term in the solution. Because the eigenvalue is degenerate there

is another solution of the homogeneous equation, Eq. (A9),

ξ1(zz− z′), (A16)
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where one has

z′ = B−1V z. (A17)

The fact that zz− z′ is a solution of Eq. (A9) can be verified by substitution. We note that

z′ is only defined to within an additional term proportional to z. The numerical procedure

we use to obtain z′ gives a result that is orthogonal to zT.

When the electric field is in the x-direction, which is translationally invariant, the term

zz − z′ does not play a role, because there is no current flow in the z-direction and the

coefficient of z′ must be zero, so the term is discarded. However, in the case that the electric

field is in the z-direction, zz− z′ is an essential part of the solution for g. In that case Eq.

(10), the solution for the bulk value of g becomes

gbulk = B−1eEvz = eEB−1V z. (A18)

Comparison with Eq. (A17) gives

gbulk = eEz′. (A19)

Thus, z′ is proportional to gbulk and the second term on the right-hand side of Eq. (A16) is

one that carries current. The linear z dependent portion of zz−z′, which can be interpreted

either as a chemical potential gradient or an external field, implies the current carrying part

z′.

From Eqs. (A12), (A15), and the discussion following Eq. (A15), our final result is

gk =
∑
k′
B−1

k,k′Ak′ + ξ0zk + ξ1(zkz − z
′
k) +

∑
i

′
ξie
−λizxi,k, (A20)

where the λi are given by Eq. (A14) and the ξ are to be determined by the boundary

conditions. The two values of i for which λi = 0 are excluded from the summation in Eq.

(A20). If the correct field E is used to find the particular solution, the first term in Eq.

(A20), then ξ1 will be zero. Otherwise, the term ξ1(zkz − z′k) will compensate to give the

correct field and current.
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The particular solution and the two terms associated with zero eigenvalues control the

current and the constant part of the field in each layer. The exponential terms also have

an isotropic part and contribute to the variation of the field, but they do not carry current

perpendicular to the interface. Only the particular solution and the ξ1(zkz−z′k) terms carry

current in that direction. While the exponential terms do not carry current, they do change

the angular distribution of the current. This redistribution is why these terms are important

near interfaces. They change the angular dependence of current distribution from that of

the bulk to that which gets through the interface.

20



REFERENCES

1 P. M. Levy, Solid State Physics, 47, 367 (1994); P. M. Levy and S. Zhang, J. Magn. Magn.

Mater. 164, 284 (1996); P. B. Allen, Solid State Communications 102, 127 (1997).

2 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G.

Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988); G. Binasch, P.

Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

3 P. B. Allen, in Quantum Theory of Real Materials, edited by J. R. Chelikowsky and S.

G. Louie (Kluwer Academic Publishers, Boston, 1996).
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FIGURES

FIG. 1. Ratio of transport mean free path to mean free path. The insert (a) shows the

anisotropy of the scattering probability, P , for indicated values of the parameter kF` = 0, 1, 2, 3.

The main panel (b) shows the corresponding ratios of the scattering time mean free path to the

transport mean free path.

FIG. 2. Current distribution in a thin film. Panel (a) shows the geometry of thin slab indicating

direction of current. Panels (c-d) show the exact current density (solid line) and current density

calculated in the relaxation-time approximation (dashed line) for several values of the film thickness

in terms of the transport mean free path.

FIG. 3. Conductivity of a thin film. For the indicated values of kF` = 0, 1, 2, 3, the main

panel and the insert show the ratio of exact numerical conductivity to that calculated using the

relaxation-time approximation as a function of the ratio of the film thickness to the transport

relaxation-time mean free path. The insert shows the region where the ratio d/λrta is very small.

FIG. 4. Variation of chemical potential near an interface with a perpendicular current. The

dashed lines indicate the chemical potentials far from the interface and the solid line includes

the contribution of the exponential terms. In panels (a) and (b), the external electric field is

respectively not included and included. The ∞ and 0 label the potential drop associated with the

interface far from the interface and at the interface, respectively. The calculations use kF` = 1 and

n = 8 (see Eq. (28)).

FIG. 5. Angular dependence of current though an interface. Panel (a) shows the current

density, Eq. (32), for various values of α as a function of cos(θ). Panel (b) shows the “chemical

potential” δµ, Eq. (33), for various values of α as a function of cos(θ). The calculations use kF` = 1

and n = 8.
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FIG. 6. Interface resistance as a function of reflection strength. Panel (a) shows the interface

resistance calculated in the relaxation-time approximation with the transport lifetime versus α for

n = 2, see Eq. (28). The resistance is scaled by RA = 6πm/(Ae2k3
F). Panel (b) shows the ratio

of the exact barrier resistance to that calculated in the relaxation-time approximation with the

transport lifetime for kF` = 1, 2, 3. Panel (c) shows the difference between the interface resistance

R related to the potential drop in Fig. (4a) labeled ∞ and that labeled 0.

FIG. 7. Interface resistance as a function of reflection strength. Same as Fig. (6), but for n = 8.
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